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Abstract: We examine a scenario where the new physics at the LHC includes an approxi-

mate conformal field theory, where some of the degrees of freedom (aka “unparticles”) carry

a color charge. We present a simple argument showing that the production cross section

for scalar unparticles mediated by a gauge interaction is given by 2− d times the standard

particle expression, where d is the scaling dimension of the unparticle field. We explicitly

check that this is indeed the case, which involves non trivial cancellations between different

Feynman diagrams, for the process qq̄ → scalar unparticles.
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1. Introduction

Recently Georgi [1, 2] has suggested a new approach to analyzing the phenomenology of

conformal sectors coupled to the standard model by non-renormalizable interactions. He

refers to the propagating degrees of freedom of such conformal sectors as “unparticles” since

their phase space resembles the phase space of a non-integer number of particles. Georgi [1]

also speculated that it would be interesting to study the case where the unparticles had

standard model gauge quantum numbers. Since the presence of new massless modes with

standard model gauge couplings would drastically modify low energy phenomenology, we

will assume in this paper that such charged unparticles have an infrared cutoff, so that the

effects of the unparticles will be mainly restricted to high-energies such as will be probed

by the Large Hadron Collider (LHC).

The most spectacular signals for unparticles at the LHC would arise in the case where

the new unparticles carry a color charge. For example we could imagine a theory with a new

type of quark that carries color but also couples strongly to an approximate conformal field

theory (CFT) sector. If sufficiently stable, these “unquarks” would appear in the detector

as “unjets” which can be very different from the usual jets of QCD. Since, as mentioned

above, we do not think there can be new light degrees of freedom that couple to gluons, the

CFT must have some dynamics that cuts off the infrared at least below the few hundred

GeV range. This is similar to the the case of Randall-Sundrum models [3] with gluons in

the bulk: an infrared cutoff is required to have a phenomenologically acceptable model,

and the usual infrared cutoff (a TeV brane) violently breaks the approximate conformal

symmetry of the model. We will similarly impose a hard infrared cutoff on the colored

unparticles, but it is still possible that color neutral unparticles can be massless or at least

much lighter than the colored unparticles.
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Essentially we are thinking of an effective theory for a massive particle that couples

to a CFT so that it has a large anomalous dimension. One of the intriguing features of

Georgi’s proposal is that it suggests new ways to impose an infrared cutoff on a CFT (or

a Randall-Sundrum-like) theory. Further it may provide a weak coupling description of a

CFT without relying on a large N limit.

Here we will focus on an analysis of colored scalar unparticle production from a quark-

antiquark initial state. Gluon fusion will probably dominate at the LHC, but that calcu-

lation is much more involved and we will be content here with demonstrating the general

methods that go into such calculations. We will nevertheless provide a simple answer for the

gluon fusion case as well. After introducing our infrared cutoff, we examine colored unpar-

ticle propagators and how to derive their gluon coupling Feynman vertices (form-factors).

Finally we describe the parton level production cross-section calculation and finish off with

conclusions and a discussion of future directions.

2. An infrared cutoff

The phase space factor for a scalar unparticle final state with scaling dimension d is [1]

dΦ(p, d) = Ad θ
(

p0
)

θ
(

p2
) (

p2
)d−2

, (2.1)

where

Ad =
16π5/2

(2π)2d

Γ(d + 1/2)

Γ(d − 1) Γ(2d)
(2.2)

amounts to a useful normalization convention [1].

Without knowing the details of how the scale invariance of the CFT sector is broken

in the infrared, we will parameterize our ignorance with an infrared cutoff scale m. For a

Lorentz scalar operator with scaling dimension1 1 ≤ d < 2 we take the simple ansatz [4, 5]:

∆(p,m, d) ≡
∫

d4x eipx〈0|TO(x)O†(0)|0〉

=
Ad

2π

∫ ∞

m2

(M2 − m2)d−2 i

p2 − M2 + iǫ
dM2 . (2.3)

This form has been chosen because in the limit m → 0 it reduces to Georgi’s unparticle

propagator, and furthermore in the d → 1 limit it reduces to a free particle propagator

with mass m, which we know to be the case for gauge invariant operators from unitarity

arguments [6].

From the conjectured correspondence between five dimensional anti-de Sitter (AdS5)

space theories and CFTs, it also seems reasonable to suggest that the infrared cutoff should

not correspond to something like confinement since this would just result in towers of CFT

“mesons”, “baryons”, and “glueballs”, which are the Kaluza-Klein modes of the AdS5

1For scaling dimensions d > 2 we need to provide an ultraviolet cutoff as well.
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theory. Perhaps the CFT we are considering here has “chiral symmetry breaking without

confinement”. There are well understood CFTs where we can engineer such behavior.

Consider a Banks-Zaks fixed point theory [7] with a large N gauge group. Giving a mass

to one of the fermions will give an order 1/N correction to the fixed point, but the massive

fermion will still be able to emit massless gauge bosons and will acquire a branch-cut in its

propagator starting at the fermion mass. By looking at supersymmetric examples we can

extend this analysis to strong coupling. Consider Seiberg’s dual of SUSY QCD [8] in the

conformal window at large N . The meson operator has a scaling dimension between 1 and

2. We can assume for simplicity that the gauge coupling is tuned to its fixed point value in

the UV. Adding a mass term for one of the flavors will again give an order 1/N correction

to the fixed point and result in a propagator with a branch cut starting at the mass. Such

branch cuts are ubiquitous in field theory. They occur in any theory where a particle

can emit massless states such gauge bosons. This happens for the electron propagator in

QED [9] and the gluon propagator in QCD [10], for example.

Performing the integration in (2.3) we find

∆(p,m, d) =
Ad

2 sin dπ

i

(m2 − p2 − iǫ)2−d
. (2.4)

In the limit d → 1 we have

∆(p,m, 1) =
i

p2 − m2 + iǫ
, (2.5)

the free particle propagator, as required by unitarity [6].

The discontinuity across the cut gives the modified phase space to be:

dΦ(p,m, d) = Ad θ
(

p0
)

θ
(

p2 − m2
) (

p2 − m2
)d−2

. (2.6)

As d → 1 from above, dΦ(p,m, d) approaches 1-particle phase space with the appropriate

mass-shell constraint

dΦ(p,m, 1) = 2π θ
(

p0
)

δ(p2 − m2) . (2.7)

3. Gauge interactions

The propagator in eq. (2.4) can be derived from the momentum space effective action

S =
2 sin dπ

Ad

∫

d4p

(2π)4
φ†(p)

[

m2 − p2
]2−d

φ(p) . (3.1)

If we want to weakly gauge a global symmetry G of this theory we can first Fourier Trans-

form the action (3.1) to arrive at a non-local theory in position space

S =

∫

d4x d4y φ†(y)F (x − y)φ(x) , (3.2)
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and then ensure G gauge invariance by using Mandelstam’s method [11] of introducing a

path-ordered exponential of the gauge field, i.e. a Wilson line,

W (x, y) = P exp

[

−igT a

∫ y

x
Aa

µdwµ

]

, (3.3)

between the two unparticle fields evaluated at x and y. This method has been previously

applied to non-local toy-model field theories [12, 13], for example the non-local chiral-quark

model [13].

Applying this method to the QCD interactions of the unparticles allows us to calculate

the Feynman vertex for a gluon coupled to two unparticles. The result using eq. (3.1) is

igΓaµ(p, q) ≡ iδ3S

δAaµ(q)δφ†(p + q)δφ(p)

= igT a 2 sin dπ

Ad

2pµ + qµ

2p · q + q2

[

(

m2 − (p + q)2
)2−d −

(

m2 − p2
)2−d

]

. (3.4)

As a check we note that this vertex satisfies the Ward-Takahashi identity [14]

−iqµΓaµ(p, q) = ∆−1(p + q,m, d)T a − T a∆−1(p,m, d) . (3.5)

The path-ordered exponential includes arbitrarily high powers of the gauge field, so there

are vertices with arbitrary numbers of gauge bosons. The two gauge boson vertex is

g2Γabµν(p, q1, q2) = −g2
{(

T aT b + T bT a
)

gµνF(q1 + q2) (3.6)

+T aT b (2p + q2)
ν(2p + 2q2 + q1)

µ

q2
1 + 2(p + q2) · q1

[F(q1 + q2) −F(q2)]

+T bT a (2p + q1)
µ(2p + 2q1 + q2)

ν

q2
2 + 2(p + q1) · q2

[F(q1 + q2) −F(q1)]

}

,

where

F(q) =
2 sin dπ

Ad

(

m2 − (p + q)2
)2−d −

(

m2 − p2
)2−d

q2 + 2p · q . (3.7)

4. Unparticle production

In this section we want to compute the cross section σ(qq̄ → unparticles) at leading order

in αs. Thus we need to evaluate the imaginary part of qq̄ forward scattering via a gluon

in the s-channel with a one loop correction to the gluon line from unparticles, as shown in

figure 1.

A slick way to get the result is to calculate the effective action by taking the logarithm

of the partition function Z. From writing (3.2) as a power of a gauge covariant derivative

D, we simply find from the path integral that:

ln Z = −1

2
ln Det(D2 + m2)2−d

= −1

2
Tr ln(D2 + m2)2−d

= −1

2
(2 − d)Tr ln(D2 + m2). (4.1)
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Figure 1: Forward scattering of qq̄ through a gluon with a scalar unparticle vacuum polarization

loop. The imaginary parts of those diagrams contribute to the unparticle production cross-section.

Thus the sum of one unparticle loop graphs with a fixed number of gauge boson legs is just

2 − d times the usual one particle loop answer.

We will verify this result by explicitly calculating the cross section in the qq̄ channel.

One might think of applying the usual Cutkosky rules [15]: cutting the unparticle prop-

agators and replacing them with the unparticle phase space factor (2.6). This however

leads to the wrong answer, in particular a divergent cross section. The reason is that the

vertices in eqs. (3.4) and (3.6) also contain non-trivial functions of the momenta, and they

do contribute to the imaginary part of the qq̄ scattering amplitude. Therefore, we must

consider the amplitude as a whole and compute the imaginary part directly.

As a starting point, we can simplify the calculation by setting the infrared cut-off to

zero. The imaginary part can be extracted from the vacuum polarization amplitude: for

incoming momentum q, gauge invariance requires that such an amplitude is proportional

to q2(ln(−q2/Λ2) + finite), and the imaginary part can be extracted from the ln term

Im
[

q2 ln(−q2/Λ2)
]

= q2π . (4.2)

Since dimensional analysis requires that the ln(−q2) comes with a logarithm of the regulator

scale squared, Λ2, we can easily find the coefficient of ln(−q2) by extracting the regulator

dependence.

The first diagram in figure 1 is proportional to:

A1 ∼
∫

d4p

(2π)4
q2 − 4p · q + 4p2

(q2 − 2p · q)2

[

2 −
(−(p − q)2 − iǫ

−p2 − iǫ

)2−d

−
( −p2 − iǫ

−(p − q)2 − iǫ

)2−d
]

. (4.3)

Note that the normalization Ad cancels between propagators and vertices in the loop as

it should. Looking at the large p region of the loop integration we can Taylor expand for

small q:

∫

d4p

(2π)4
q2 − 4p · q + 4p2

(q2 − 2p · q)2

[

c2

(

q2 − 2p · q
)2

p4
+ c3

(

q2 − 2p · q
)3

p6
+ c4

(

q2 − 2p · q
)4

p8
+ . . .

]

,(4.4)

where

c2 = −(d − 2)2 ,

c3 = (d − 2)2 , (4.5)

c4 = −(d − 2)2(d2 − 4d + 15)/12 .
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Picking out the terms that generate logarithms we are left with

∫

d4p

(2π)4
(c2 + 4c3)

q2

p4
+ (c3 + 2c4)

8(p · q)2
p6

. (4.6)

Thus, the first diagram’s contribution to the massless scalar unparticle production cross-

section is suppressed relative to the massless scalar particle production by

σd

σ1

∣

∣

∣

∣

diag. 1
=

d(2 − d)2(4 − d)

3
. (4.7)

The second diagram does not give any contribution in the particle case (d = 1), where

the only contribution to the imaginary part comes from cuts of propagators. However, this

is not true in the unparticle case. The amplitude is proportional to the integral:

A2 ∼
∫

d4p

(2π)4

{

−2 − d

2

1

p2 − m2 + iǫ

[

8 +
q2 − 4p · q + 4p2

(q2 − 2p · q) +
q2 + 4p · q + 4p2

(q2 + 2p · q)

]

+
q2 − 4p · q + 4p2

(q2 − 2p · q)2

[

1 −
(

m2 − (p − q)2 − iǫ
)2−d

(m2 − p2 − iǫ)2−d

]

+
q2 + 4p · q + 4p2

(q2 + 2p · q)2

[

1 −
(

m2 − (p + q)2 − iǫ
)2−d

(m2 − p2 − iǫ)2−d

]}

. (4.8)

Applying the same technique as before, we find:

σd

σ1

∣

∣

∣

∣

diag. 2
=

(d − 1)(d − 2)(d2 − 5d + 3)

3
. (4.9)

As expected, this contribution to the cross section vanishes both in the d → 1 and d → 2

limits. Combining the two results in eqs. (4.7) and (4.9) together, we obtain the simple

result

σd

σ1
= (2 − d) , (4.10)

in agreement with eq. (4.1).

In the appendix we show how to obtain the same results via a direct calculation of

the discontinuity of the integrals, providing a check of the results in eqs. (4.7) and (4.9).

Such a calculation allows us to take into account the presence of the IR cutoff, which

cannot be inferred from the small q expansion above. Our simple ansatz for the breaking

of conformal invariance, leads to a very simple result: the d and m dependence factorize,

and the dependence on the IR cutoff is given by the usual kinematical factor. This result

is achieved via non trivial cancellations between the two diagrams in figure 1, as shown in

the appendix. Therefore the unparticle production cross section is:

σd(m) = (2 − d)

(

√

1 − 4m2

q2

)3

σ1(m = 0) = (2 − d)σ1(m) . (4.11)
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5. Conclusions

In this paper we have considered scalar unparticles that carry standard model gauge quan-

tum numbers. We have seen that the production cross section of such unparticles via gauge

interactions is, at first order in αs, simply suppressed by a factor 2 − d compared to the

pair production of the corresponding scalar particles. We explicitly calculated the cross

section in the qq̄ annihilation channel, where this simple result arises through a non trivial

cancellation between two diagrams, one of which is does not contribute in the particle limit

d → 1. We included a simple parameterization of an IR cutoff, which seems phenomeno-

logically necessary for unparticles to be charged under standard model gauge groups. Our

parameterization yields a simple result: the IR cutoff dependence factorizes and the cross

section is multiplied by a simple suppression factor. These results may be generalized to

the gluon fusion channel, which will dominate for unparticle pair production at the LHC.

It would be quite interesting to study the detailed phenomenology of colored unparticles

at the LHC.

In addition to having a suppressed cross-section, the final states arising from these

colored unparticles would look very different from ordinary jets. If the unparticles are

stable enough to travel a significant distance through the detector one would have to

understand the details of unparticle QCD hadronization (“unjet” formation). Some of the

difficulties involved are analogous to those of the long-lived gluino scenario [16]. A further

complication is that the unquarks can still radiate into lighter CFT degrees of freedom

that are not colored (the gauge singlet unparticles usually considered in the literature).

Thus there is an additional loss of energy that is invisible to the detector, which results

in missing energy along the two unjet directions. In a more general model than we have

considered here, with mixing between colored unparticles and other colored particles, one

could imagine a scenario where a single colored unparticle is produced so that the missing

energy is entirely along a single unjet direction.

An even more interesting scenario to explore is one where the unparticles also have

electroweak quantum numbers. Unquarks could then decay into ordinary quarks and they

would have a passing resemblance to a fourth family [17]. (This is the simplest way to allow

unquarks to decay and avoid searches bounding stable exotics.) We could even imagine

that the unquarks play a role in electroweak symmetry breaking which would give us a new

approach to the hierarchy problem. If the scaling dimension of the analog of the Higgs mass

operator is larger than two, such a scenario would have some similarities with gaugephobic

Higgs models [18].

Acknowledgments
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A. Calculation

In this appendix we discuss an alternative way to calculate the integrals in eqs.(4.3)

and (4.8), that correctly takes into account the effect of the IR cutoff of the conformal

sector.

Let us focus on eq. (4.3):

∫

d4p

(2π)4
q2 − 4p · q + 4p2

(q2 − 2p · q)2

[

2−
(

m2 − p2 − iǫ

m2 − (p − q)2 − iǫ

)2−d

−
(

m2−(p − q)2 − iǫ

m2 − p2 − iǫ

)2−d
]

. (A.1)

We are interested in the imaginary part of (A.1), so we can neglect the factor 2 inside the

square brackets. For simplicity, we will illustrate the calculation on the second term in the

integral:

Ξ(q) =

∫

d4p

(2π)4
q2 − 4p · q + 4p2

(q2 − 2p · q)2
(

m2 − p2 − iǫ

m2 − (p − q)2 − iǫ

)2−d

. (A.2)

We use Feynman parameters to rewrite this integral as

Im Ξ(q)=−sin dπ

π
Im

∫

d4p

(2π)4
q2 − 4p · q + 4p2

(q2 − 2p · q)2
∫ 1

0
dx

[

x1−d(1 − x)d−2(p2−m2)

p2+x(q2−2p · q) − m2 + iǫ

]

. (A.3)

In this way the d−dependence appears only in the powers of x: momenta all have integer

powers. Going to the rest frame, where p = (E,−→p ), q = (q,
−→
0 ), we notice that the integrand

has a pole at E = qx +
√

p2 − q2(1 − x)x. Taking the residue at this pole we get

Im Ξ(q) = −sin dπ

8π3
Im

∫ ∞

0
dp

∫ 1

0
dx

(

x

1 − x

)2−d

·
p2
(

4m2 + q
(

4
√

m2 + p2 − q2(1 − x)x(2x − 1) + q(1 − 8(1 − x)x)
))

q
√

m2 + p2 − q2(1 − x)x
(

q(2x − 1) + 2
√

m2 + p2 − q2(1 − x)x
) . (A.4)

Next notice that the term (q(2x− 1) + 2
√

m2 + p2 − q2(1 − x)x) appearing at the denom-

inator of eq. (A.4) vanishes at p =
√

q2 − 4m2/2 only if x < 1/2. Thus this pole will give

a contribution to the imaginary part of the integral. We evaluate it taking the residue

Impole Ξ(q) =
q2

32π2
sin dπ β3

∫ 1/2

0
dx

(

x

1 − x

)2−d

=
q2

32π2
sin dπ β3 B

(

1

2
; 3 − d,−1 + d

)

(A.5)

where β =
√

1 − 4m2/q2 and B is the incomplete beta function, defined as

B (z; a, b) =

∫ z

0
du (u)a−1(1 − u)b−1 . (A.6)
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There is another contribution to the imaginary part of our original integral, which

comes directly from the region where the argument of the square roots appearing in

eq. (A.4) is negative. This can be evaluated as

Im√ Ξ(q) = −sin dπ

8π3

∫ (1+β)/2

(1−β)/2
dx

(

x

1 − x

)2−d

·
∫

√
−m2+q2x(1−x)

0
dp

p2
(

4m2 + 8p2 − q2
)

(1 − 2x)

(4 (m2 + p2) − q2)
√

−m2 − p2 + q2(1 − x)x
. (A.7)

The integral can be performed analytically and the result can be expressed in terms of

incomplete Beta functions:

Im√ Ξ(q) =
q2

32π2
sin dπ

[

−β3 B

(

1

2
; 3 − d, d − 1

)

+ β3 B(
1 − β

2
; 3 − d, d − 1)+

+
β3 + 2β2 − 1

2
f(β, 3 − d, d − 1) + (3 − 2β2) f(β, 4 − d, d − 1) +

−6 f(β, 5 − d, d − 1) + 4 f(β, 6 − d, d − 1)

]

(A.8)

where we defined the auxiliary function

f(β, a, b) = B

(

1 + β

2
; a, b

)

− B

(

1 − β

2
; a, b

)

. (A.9)

It is interesting to note that the contribution of the last term in eq. (A.1) can be obtained

by the previous result substituting d → 4 − d.

The contribution to the cross section of the 2 diagrams in figure 1 can be written as:

σd(m)

σ1

∣

∣

∣

∣

diag. 1
=

sin dπ

π

[

β3 + 2β2 − 1

2

(

f(β, 3 − d, d − 1) − f(β, d − 1, 3 − d)
)

+

+β3
(

B(
1 − β

2
; 3 − d, d − 1) − B(

1 − β

2
; d − 1, 3 − d)

)

+

+(3 − 2β2)
(

f(β, 4 − d, d − 1) − f(β, d, 3 − d)
)

+

−6
(

f(β, 5 − d, d − 1) − f(β, d + 1, 3 − d)
)

+

+4
(

f(β, 6 − d, d − 1) − f(β, d + 2, 3 − d)
)

]

; (A.10)

σd(m)

σ1

∣

∣

∣

∣

diag. 2
= (2 − d)β3 − σd(m)

σ1

∣

∣

∣

∣

diag. 1
. (A.11)

where the result from the second diagram matches non trivially the same series of Beta

functions as the first diagram, leading to the simple result presented in section 4.

We can now check that in the case m → 0 we reproduce the results in eqs.(4.7)

and (4.9), using the following properties of the Beta functions:

B (0; a, b) = 0 ; B(1; a, b) =
Γ(a)Γ(b)

Γ(a + b)
, if a, b > 0 . (A.12)
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[18] G. Cacciapaglia, C. Csáki, G. Marandella and J. Terning, The gaugephobic Higgs, JHEP 02

(2007) 036 [hep-ph/0611358].

– 11 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=EPHJA%2CC37%2C91
http://arxiv.org/abs/hep-ex/0404001
http://arxiv.org/abs/hep-ex/0506009
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD71%2C015015
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD71%2C015015
http://arxiv.org/abs/hep-ph/0408335
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C76%2C4111
http://arxiv.org/abs/hep-ph/9603271
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB422%2C158
http://arxiv.org/abs/hep-ph/9712254
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD62%2C035003
http://arxiv.org/abs/hep-ph/9912436
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD59%2C075002
http://arxiv.org/abs/hep-ph/9806361
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=EPHJA%2CC31%2C327
http://arxiv.org/abs/hep-ex/0305071
http://arxiv.org/abs/hep-ph/0008070
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD76%2C055007
http://arxiv.org/abs/hep-ph/0506242
http://jhep.sissa.it/stdsearch?paper=08%282007%29069
http://arxiv.org/abs/0705.1736
http://jhep.sissa.it/stdsearch?paper=03%282007%29063
http://arxiv.org/abs/hep-ph/0702037
http://jhep.sissa.it/stdsearch?paper=08%282006%29076
http://arxiv.org/abs/hep-ph/0606146
http://jhep.sissa.it/stdsearch?paper=02%282007%29036
http://jhep.sissa.it/stdsearch?paper=02%282007%29036
http://arxiv.org/abs/hep-ph/0611358

